p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.14C23, C42.39C22, C22.34C24, C2.82+ 1+4, (C4×D4)⋊12C2, C4⋊1D4⋊6C2, C4⋊D4⋊9C2, C42.C2⋊5C2, C4.20(C4○D4), C4⋊C4.29C22, (C2×C4).21C23, C42⋊C2⋊12C2, (C2×D4).33C22, C22.D4⋊6C2, C22⋊C4.3C22, (C22×C4).63C22, C2.17(C2×C4○D4), SmallGroup(64,221)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.34C24
G = < a,b,c,d,e,f | a2=b2=c2=e2=1, d2=b, f2=a, ab=ba, dcd-1=fcf-1=ac=ca, ede=ad=da, ae=ea, af=fa, ece=bc=cb, bd=db, be=eb, bf=fb, df=fd, ef=fe >
Subgroups: 201 in 120 conjugacy classes, 73 normal (13 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, C2×C4, D4, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C42⋊C2, C4×D4, C4⋊D4, C22.D4, C42.C2, C4⋊1D4, C22.34C24
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, C22.34C24
Character table of C22.34C24
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ10 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ12 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ13 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ14 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ15 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ16 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 2 | -2 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 2 | -2 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | -2 | 2 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | -2 | 2 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ21 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ 1+4 |
ρ22 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ 1+4 |
(1 27)(2 28)(3 25)(4 26)(5 20)(6 17)(7 18)(8 19)(9 13)(10 14)(11 15)(12 16)(21 29)(22 30)(23 31)(24 32)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 11)(2 16)(3 9)(4 14)(5 32)(6 21)(7 30)(8 23)(10 26)(12 28)(13 25)(15 27)(17 29)(18 22)(19 31)(20 24)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 23)(2 32)(3 21)(4 30)(5 14)(6 11)(7 16)(8 9)(10 20)(12 18)(13 19)(15 17)(22 26)(24 28)(25 29)(27 31)
(1 15 27 11)(2 16 28 12)(3 13 25 9)(4 14 26 10)(5 22 20 30)(6 23 17 31)(7 24 18 32)(8 21 19 29)
G:=sub<Sym(32)| (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,13)(10,14)(11,15)(12,16)(21,29)(22,30)(23,31)(24,32), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,11)(2,16)(3,9)(4,14)(5,32)(6,21)(7,30)(8,23)(10,26)(12,28)(13,25)(15,27)(17,29)(18,22)(19,31)(20,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,23)(2,32)(3,21)(4,30)(5,14)(6,11)(7,16)(8,9)(10,20)(12,18)(13,19)(15,17)(22,26)(24,28)(25,29)(27,31), (1,15,27,11)(2,16,28,12)(3,13,25,9)(4,14,26,10)(5,22,20,30)(6,23,17,31)(7,24,18,32)(8,21,19,29)>;
G:=Group( (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,13)(10,14)(11,15)(12,16)(21,29)(22,30)(23,31)(24,32), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,11)(2,16)(3,9)(4,14)(5,32)(6,21)(7,30)(8,23)(10,26)(12,28)(13,25)(15,27)(17,29)(18,22)(19,31)(20,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,23)(2,32)(3,21)(4,30)(5,14)(6,11)(7,16)(8,9)(10,20)(12,18)(13,19)(15,17)(22,26)(24,28)(25,29)(27,31), (1,15,27,11)(2,16,28,12)(3,13,25,9)(4,14,26,10)(5,22,20,30)(6,23,17,31)(7,24,18,32)(8,21,19,29) );
G=PermutationGroup([[(1,27),(2,28),(3,25),(4,26),(5,20),(6,17),(7,18),(8,19),(9,13),(10,14),(11,15),(12,16),(21,29),(22,30),(23,31),(24,32)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,11),(2,16),(3,9),(4,14),(5,32),(6,21),(7,30),(8,23),(10,26),(12,28),(13,25),(15,27),(17,29),(18,22),(19,31),(20,24)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,23),(2,32),(3,21),(4,30),(5,14),(6,11),(7,16),(8,9),(10,20),(12,18),(13,19),(15,17),(22,26),(24,28),(25,29),(27,31)], [(1,15,27,11),(2,16,28,12),(3,13,25,9),(4,14,26,10),(5,22,20,30),(6,23,17,31),(7,24,18,32),(8,21,19,29)]])
C22.34C24 is a maximal subgroup of
C42.353C23 C42.356C23 C42.360C23 C42.423C23 C22.44C25 C22.83C25 C22.101C25 C22.102C25 C22.113C25 C22.122C25 C22.123C25 C22.146C25 C22.148C25 C22.155C25 C22.156C25
C2p.2+ 1+4: C42.406C23 C42.407C23 C4.2- 1+4 C42.26C23 C42.27C23 C22.49C25 C22.97C25 C22.106C25 ...
C8⋊pD4⋊C2: C42.386C23 C42.388C23 C42.391C23 ...
C22.34C24 is a maximal quotient of
C24.192C23 C23.201C24 C42⋊13D4 C42⋊14D4 C42.33Q8 C23.215C24 C24.204C23 C24.254C23 C23.328C24 C23.345C24 C24.278C23 C23.364C24 C24.290C23 C24.293C23 C23.397C24 C23.407C24 C23.413C24 C23.416C24 C23.422C24 C23.426C24 C23.431C24 C42⋊27D4 C23.524C24 C23.530C24 C23.535C24 C23.544C24 C42.39Q8 C23.548C24 C24.375C23 C23.551C24 C23.554C24 C24.377C23 C23.567C24 C23.571C24 C23.573C24 C24.395C23 C24.406C23 C24.407C23 C23.603C24 C23.606C24 C24.411C23 C24.426C23 C23.640C24 C23.641C24 C23.643C24 C24.434C23 C23.649C24 C23.652C24 C24.437C23 C23.656C24 C24.440C23 C23.668C24 C23.673C24 C23.677C24 C24.448C23 C23.686C24 C23.691C24 C23.693C24 C23.697C24 C23.700C24 C23.703C24 C23.728C24 C23.729C24 C23.736C24 C23.737C24
C42.D2p: C42.188D4 C42.194D4 C42.100D6 C42.116D6 C42.155D6 C42.168D6 C42.100D10 C42.116D10 ...
C4⋊C4.D2p: C23.354C24 C23.390C24 C23.607C24 C23.611C24 C6.442+ 1+4 C6.472+ 1+4 C6.662+ 1+4 C10.442+ 1+4 ...
Matrix representation of C22.34C24 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 4 | 0 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,1,0,0,0,0,4,0,0,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0] >;
C22.34C24 in GAP, Magma, Sage, TeX
C_2^2._{34}C_2^4
% in TeX
G:=Group("C2^2.34C2^4");
// GroupNames label
G:=SmallGroup(64,221);
// by ID
G=gap.SmallGroup(64,221);
# by ID
G:=PCGroup([6,-2,2,2,2,-2,2,217,199,650,188,579,69]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=e^2=1,d^2=b,f^2=a,a*b=b*a,d*c*d^-1=f*c*f^-1=a*c=c*a,e*d*e=a*d=d*a,a*e=e*a,a*f=f*a,e*c*e=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*f=f*d,e*f=f*e>;
// generators/relations
Export